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Abstract—Multi-access edge computing (MEC) providing
server capabilities at near end-users is introduced to enable Ultra
Reliable Low Latency Communication (URLLC) for mission-
critical and time-sensitive networked services. However, the cur-
rent MEC simply shortens the physical travel distance of traffic
but does not include any architectural approach for supporting
URLLC. As a result, MEC implicates resource contention issues,
and important packets can be easily delayed or lost, resulting
in critical flaws for those services. To address these problems,
we introduce MECaNIC , which extends the data plane of
MEC to SmartNIC and assists URLLC of MEC. It provides i)
precise packet scheduling that handles traffic priorities into two
dimensions of reliability and latency, and ii) task offloading that
accelerates MEC applications, including payload matching and
response caching. The prototype implemented using NetFPGA
shows that MECaNIC reduces the average latency of the high-
priority traffic from 2,823 µs to 397 µs while ensuring packet
delivery, even when the traffic competes with other lower priority
traffic. Also, task offloading improves a MEC’s payload process-
ing 4-fold and reduces file downloading time and video random
access time by 44% and 17%, respectively.

Index Terms—Edge computing, URLLC, SmartNIC

I. INTRODUCTION

Ultra low-latency and reliable communication (URLLC),
which means under 1 ms latency and packet loss rates
of 1:100,000 [1], [2], is considered to be the momentous
requirement for mission-critical and time-sensitive networked
services such as connected cars, Internet of Things (IoT),
Cyber-Physical Systems (CPS), or multimedia as well as
augmented/virtual reality (AR/VR) [3]–[13]. However, since it
is challenging to meet the requirement of communicating with
the traditional remote server capabilities (e.g., cloud), Multi-
access edge computing (MEC) is emerged, which provides
the server infrastructure at the edge of the backhaul network
and in close proximity to end-devices/users in shortening the
physical travel distance of network traffic. In this context,
MEC should be able to handle various third-party services
within the limited resource, so the structure of MEC is
based on a virtualization environment (e.g., Network Function
Virtualization) with COTS devices (e.g., x86 servers), and it
is defined as the standard by European Telecommunication
Standards Institute (ETSI) [14].

However, the following research question about the cur-
rent MEC structure remains: “MEC has been introduced

for URLLC, but does MEC really support URLLC well?”.
Although MEC may be recognized as a new significant archi-
tecture to achieve URLLC, the current MEC simply follows
a conventional virtualization system without any structural
consideration for URLLC, except being physically near the
end-hosts. In this regard, we found that several problems break
URLLC in MEC. First, due to the characteristics of a virtu-
alized environment, multiple traffic flows for several services
are concentrated on a single MEC host, and various MEC
services (applications) share limited hardware resources, mak-
ing resource contention likely. This leads to non-deterministic
results in traffic processing which can compromise reliable
and low-latency communication, and even critical traffic (e.g.,
autonomous driving) can be delayed or dropped when they
contend with other packets for less important services (e.g.,
video streaming). In addition, since network traffic arriving at
MEC can be processed on a virtual machine only after going
through a long network stack from a network interface to a
kernel and a hypervisor, network latency inevitably increases
and aggravates resource contention problems in packet pro-
cessing. Lastly, the limited processing performance of software
in packet processing becomes another bottleneck point of
URLLC; services running on MEC usually operate on the
L7 application layer, such as CoAP for IoT services [15],
[16], HTTP for REST APIs and media contents [17], [18],
or content offloading such as machine learning to MEC [19].

To properly handle requests on time, the performance of
retrieving and analyzing packet payloads is an important
feature for the MEC task. Unfortunately, pattern matching,
a basic function for packet payload processing, is one of the
most time-consuming tasks for software involving significant
throughput degradation and latency increase [20], [21]. Con-
sequently, although the primary goal of MEC is to achieve
URLLC, we conclude that the current MEC architecture itself
does not consider supporting URLLC ironically.

Several previous studies have suggested solutions to these
problems. The resource contention issue has been studied
at length with various works that propose resource sharing
and scheduling methods [22], [23]. In addition, a number of
studies [24]–[26] present L7 packet processing acceleration
techniques via hardware offloading. However, we claim that
these methods are not suitable for MEC and URLLC. While
reliability and latency of URLLC are independent attributes978-1-6654-8234-9/22/$31.00 ©2022 IEEE
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that should be managed separately, previous studies typically
have grouped them together based on a single priority concept
or have provided no further capabilities to facilitate URLLC
than just faster packet processing.

To address these limitations, we conclude that the existing
MEC architecture requires new URLLC-oriented packet pro-
cessing schemes: 1) a new scheduling system that supports
application layer protocols and manages packet priorities with
regard to reliability and latency separately, and 2) a MEC
application offloading system that mitigates the computation
overhead of packet processing tasks. To enable them on a
MEC host, we propose MECaNIC that extends the data
plane of the MEC architecture into hardware (i.e., network
interface card, NIC) and supports URLLC through fine-grained
scheduling and task offloading. Then, MECaNIC assists the
MEC host at the network-level to enable stable and reliable
URLLC networking and service processing. By leveraging
the responsiveness and parallelism of hardware, MECaNIC
determines packet priorities as soon as network interfaces
receive each packet, even taking payload into account and
provides precise scheduling that can satisfy both reliability and
latency requirements of each network flow. Also, MECaNIC
can perform a part of application tasks before forwarding
the packets to the host layer, such as pattern matching or
responding to a specific request instead of MEC applications.
This task offloading can mitigate processing delays of time-
consuming tasks and reduce overhead made by the MEC
applications, improving the overall response time of MEC.

We implement a MECaNIC prototype using NetFPGA-
SUME [27], and our evaluation shows that MECaNIC sup-
ports precise scheduling while considering L7 protocols.
MECaNIC significantly reduces and stabilizes the average
latency of high priority traffic (i.e., from 2,823 µs to 397
µs) while maintaining reliable communication even under
a contention with low priority traffic. Moreover, MECaNIC
significantly improves the performance of MEC applications
through task offloading. It increases MEC’s payload matching
throughput by 4-fold, and it reduces file downloading time and
video random access time by 44% and 17%, respectively.

II. BACKGROUND AND MOTIVATION

A. URLLC and MEC

Ultra-reliable low-latency communication (URLLC), which
supports sub-1 ms latency with packet loss rates of 1:100,000,
is a critical requirement for on mission-critical or time-
sensitive services [1], [2]. To achieve this network requirement,
multi-access edge computing (MEC), which places service
infrastructure on behalf of remote clouds at or near end-users,
is considered a pivot architecture by reducing the physical
travel distance of network traffic [14], [28], [29]. The standard
MEC architecture defined by the European Telecommunication
Standards Institute (ETSI) is based on virtualization techniques
with COTS devices (e.g., x86 servers) to allow a multitude
of third-party services on MEC as cloud infrastructure, i.e.,
Platform-as-a-Service (PaaS). [19].

Reliability Latency
requirement requirement Examples

Sensitive Sensitive Emergency brakes, Medical alarms
Sensitive Tolerant Healthcare, File downloads
Tolerant Sensitive Multimedia streaming, AR/VR
Tolerant Tolerant Common web services, best effort traffic

TABLE I: Reliability and latency requirements of MEC traffic
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Fig. 1: MEC measurement environment

Traffic model: URLLC not only enables responsive low-
latency communication, but also supports stable and reliable
communication. We argue that these two factors of communi-
cation, reliability and latency, should be treated as orthogonal
elements. Thus, we should consider MEC traffic that requires
URLLC into four classes as presented in Table I. As described
in the table, safety-critical applications, such as medical
alarms, require reliable and latency-sensitive communication.
Some applications are reliability-sensitive but latency-tolerant.
For instance, a healthcare that collects information from IoT
devices should reliably track the health conditions but does
not always have to be updated quickly. On the other hand,
video streaming services may tolerate some packet losses,
while latency is a key factor for QoS. Therefore, it is essential
for a MEC host to precisely consider the different reliability
and latency requirements for each application to bring high-
quality services to end-users.

B. Problem: Failure of URLLC on MEC

However, the current MEC architecture is practically a com-
mon NFV system and does not have any particular structure
or feature for URLLC other than simply reducing the physical
distance. That is, although MEC is introduced for URLLC, it
may be difficult to say that MEC complements URLLC well.
We find that the existing MEC architecture can compromise
URLLC: 1) The latency exceeds 1 ms and 2) the packet loss
rate increases more than 1:100,000 like the following:

Motivating example: Fig. 1a shows a motivating example
of the failure of the URLLC communication in a test envi-
ronment. The MEC host is leveraged with Intel Xeon Gold
5520, 64GB of RAM and two Intel X520-SR2 NICs. It runs
two virtual machines on top of the KVM hypervisor [30]
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Fig. 2: Problems that hinder URLLC for MEC systems

that respectively serve safety-critical and best-effort services
(e.g., VM1 for vehicle control and VM2 for infotainment).
Incoming packets to NICs are forwarded to the destination
VM while passing through the hypervisor. In this environment,
we concurrently send two traffic flows: VM1 (i.e., Noted as
High, meaning high priority) at 2.5 Gbps for 15 seconds and
VM2 (i.e., Noted as Low, meaning low priority) at 0, 2.5 and 5
Gbps every 5 seconds (See Fig. 1b). For precise measurement,
we utilize a hardware packet generator implemented with
NetFPGA-SUME, an FPGA-based PCI express 10 GbE NIC
[27]. It transmits a certain amount of packets to each interface
at a specified rate and measures its round-trip time with a
precision of 6.25 ns [31].

Result: As seen in Fig. 1c, the latency of the high traffic is
significantly affected by the low traffic, as the low increases its
sending rate. The average latency increases 9-fold from 311.95
to 2823.17 µs. Also, the loss rate increases up to 7%, meaning
a loss of 14,000 packets per second at 2.5 Gbps, which far
exceeds the reliability requirement of 1:100,000. One may
claim that this performance degradation seems minor, but it
leads to failures in providing URLLC for time and mission-
critical services. For instance, consider the high traffic as traffic
for autonomous driving control, which requires the latency of
less than 1 ms with high-reliability for safety [32]–[34]. In
this case, packets delayed by 3 ms with some loss may be
critical for a braking system to cause an accident.

Reason: We precisely analyze the result and found that the
main reasons for this problem are resource contention in the
MEC host and overhead in the MEC VM/applications (Fig. 2).
When multiple MEC applications are executed simultaneously
on a single MEC host, resource contention at the MEC host
is inevitable. This is because the MEC host consists of a
conventional network function virtualization architecture. It
provides software abstraction for an isolated network channel,
while sharing underlying hardware resources, such as network
fabric, caches, buses (i.e., PCI-E), and memory controllers
[23], [35]. Despite the contention, the data plane of the MEC
host simply handles traffic in an FCFS (First Come First
Served) manner. With FCFS, packets could be lost or delayed
randomly according to their arrival order, because each traffic
inherently contains some jitters and bursts. Another reason is
the overhead in MEC applications. When MEC application
(VM) handles reached packets, it takes computation time
to process them. Also, according to VM scheduling, packet
processing could be delayed even if all packets arrive. Such
overhead can impose large delays and packet losses.

Research Reliability Latency L7-aware Packet
scheduling scheduling scheduling accel.

HUG ’16 [22] ● ✖ ✖ -
PARTIES ’19 [43] ✖ ● ✖ -
PicNIC ’19 [23] ● ● ✖ -
FlowBlaze [24] - - ● ●

AccelTCP ’20 [26] - - ● ●
PANIC ’20 [44] ● ● ✖ ●
FairNIC ’20 [45] ● ● ✖ ●
Vajiheh ’19 [36] ● ✖ ✖ -
TODG ’22 [37] ● ● ✖ -
Tianle ’21 [46] ✖ ✖ ✖ ●

MECaNIC ● ● ● ●

TABLE II: Prior studies on scheduling and packet accel.

Implication: These problems of URLLC on MEC can
easily occur at any time considering the operating environment
of the MEC; MEC has to deal with multiple traffic flows for
different services in the VM-based environment, thus traffic
contention and resource contention are frequent. Also, as
MEC typically deals with application services, such as IoT,
automotive, VR/AR and computation offloading to MEC [36],
[37], its network traffic is commonly delivered over application
layer protocols (e.g., CoAP [15], [16] and HTTP [17], [18]).
For example, most IoT services adopt HTTP REST API
to provide diverse functionalities in an efficient and unified
manner (e.g., On a medical IoT service, to query patient
info, GET api/monitor/patient/[name]) [38]–[40].
In this context, to identify and process services requested by
users, MEC VMs need to consider application-layer contexts
(e.g., REST API URLs and methods) by performing pat-
tern/string matching on the packet’s payload. However, pattern
matching is known to be a time-consuming task, which means
not only is this operation itself a loss in latency, but it can
also cause resource contention with other VMs [41], [42].
Consequently, these issues can cause fatal errors for mission-
critical and time-sensitive services as we mentioned above.

C. Related work

To address the above problems, traffic scheduling to avoid
the contentions and offloading to accelerate the rate of process-
ing have been considered in many prior studies as summarized
in Table II. HUG [22] proposes bandwidth isolation by re-
source fairness. PARTIES [43] mainly focuses on guaranteeing
low-latency by resource partitioning, and PicNIC [23] focuses
on end-to-end performance isolation by resource sharing and
an admission control. They may be help to avoid the resource
contention issue by network scheduling. In terms of packet
processing acceleration, FlowBlaze [24], SmartTLS [25], and
AccelTCP [26] accelerate network processing by offloading
some network features into network interface cards (NIC). In
addition to the acceleration, PANIC [44] and FairNIC [45]
manage packet scheduling together. These studies might help
MEC in addressing the problems for supporting URLLC.
However, while the two critical factors in URLLC come from
the reliability and latency in processing, most of those solu-
tions have considered only one of the two aspects. Moreover,
the few studies that did consider the two factors are still not
tailored to URLLC as the application layer is disregarded.
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The characteristic of URLLC is not much considered even
in the the studies on MEC. Vajiheh [36] and TODG [37]
suggest effective computation offloading (i.e., end-devices to
MEC) strategies, but the side-effect on the MEC host by the
offloading is not considered. Tianle [46] proposes a way to
accelerate MEC with hardware, but the reliability for URLLC
is not invested. Other researches on MEC focus on improving
the responsiveness of the network or providing an optimized
network fabric, such as optimal MEC VM / application
placement in a network [47], [48], lightweight MEC service
initiation for responsiveness [49]–[51], or efficient service
utilization with MEC [52], [53], and overlook the network
architectural issues in which URLLC can be compromised.

D. Research goal

To support URLLC on MEC while addressing the limita-
tions of previous studies, we conclude that the MEC architec-
ture can be improved by designing a smartNIC-based MEC
data plane to assist URLLC networking of MEC. This aims to
achieve 1) new packet scheduling that manages traffic flows
with different requirements (Recall Table I) at the same time,
and 2) task offloading that assists proactive packet processing
or message processing without host software intervention.
As a result, the reliability and latency aspects of traffic can
be controlled independently and alleviates MEC application
overhead, resulting in stable URLLC processing on MEC.

III. SYSTEM DESIGN

Based on our insights, we propose a novel hardware-based
traffic management system ‘MECaNIC ’, a SmartNIC residing
between the host layer and network interfaces.

Design constraints: In a PaaS model, developers could
write custom SmartNIC applications and submit them to a plat-
form operator for approval and deployment onto SmartNICs.
In this context, since MECaNIC is designed as a SmartNIC
for the MEC architecture operating as a PaaS, we assume that
tenants exploit MECaNIC through its configuration APIs, and
do not attempt to circumvent our isolation mechanisms [45].

A. Architecture overview

As shown in Fig. 3, MECaNIC consists of two major com-
ponents: MECaNIC -scheduler and MECaNIC -task offloading.
MECaNIC -scheduler is a new queueing architecture that can
achieve reliable bandwidth reservation and ultra-low latency

Match Priority
ID Header Keyword Queue Reliability (P r) Latency (P l) Actions

1 A → B - 0:3 10 10 Fwd(App1)
2 A → B ”Urgent”(12,6) 0:3 50 100 Fwd(App1)
3 C → D ”Request”(24,8) 4:9 5 10 Payload(10),

Fwd(App2)
4 E → F ”GetInfo”(12,8) 0:9 1 10 Cache(10)

TABLE III: Packet classification table

communication concurrently. MECaNIC -task offloading con-
sists of hardware-implemented network functions to accelerate
MEC applications in terms of throughput and latency.

MECaNIC -scheduler (§III-B and III-C): Upon receiving
each packet, the packet classifier enqueues the packet into
the MECaNIC -queue according to the packet classification
table (See Table III). The table specifies the packet matching
entries with the priority of reliability / latency requirements
(See §III-B for more details). MECaNIC -queue also consists
of multiple queues (i.e., shared queue pool) and provides
preemptive queue allocation and per-packet priority queueing.
For reliability, each flow can allocate several queues in the
pool. The key idea is that a flow with a higher reliability
priority can preempt queues allocated to other flows with
lower reliability priorities. With this, the queue pool can
provide bandwidth reservation by dequeuing packets in a
round-robin (RR) manner. However, since RR always fairly
shares the bandwidth with other flows, it is not suitable for
supporting ultra-low latency requirements. To address this
problem, MECaNIC -queue schedules packets in per-packet
manner in order to priority them accordingly. Note that the
dequeue priority is determined by the latency requirement of
each flow. With this, MECaNIC can schedule latency-sensitive
traffic first, even if it makes some jitters and bursts. However,
realizing such the queuing algorithm is challenging, because
it may incur heavy overhead in managing queues, especially
when updating each packet’s priority value. To resolve this
issue, MECaNIC fully takes advantage of a hardware-based
system; it can concurrently execute major queue operations,
including priority value updates and queue lookups. In addi-
tion, MECaNIC provides per-VM hypervisor bypass to avoid
overhead from the hypervisor’s networking stack.

MECaNIC -task offloading (§III-D): MEC VM / appli-
cations can offload some operations into MECaNIC so that
packets can be processed before arriving at the VM. It helps
to improve throughput and latency at the same time through al-
leviating computation and internal communication overheads.
MECaNIC provides hardware-implemented network functions
that support: 1) payload matching, a widely used compute-
intensive network function, and 2) response caching that can
significantly reduce internal communication overhead. The
main idea of the accelerator is to utilize the parallelism and
responsiveness of the hardware-based architecture.

Control interface: MECaNIC aims to act as a kind of
SmartNIC that works by binding to a host machine and pro-
viding additional functions more than the packet transmission
/ reception. In order to effectively communicate with the host
machine, MECaNIC has its own device driver on the host
software layer and provides a set of APIs for management.
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From this host control interface, the host (or its network
administrator) is able to define packet priority or offloading
for incoming packets by configuring tables and other settings
of MECaNIC as necessary.

B. MECaNIC-scheduler: packet classifier

Incoming packets to MECaNIC undergo a classification
process to identify the corresponding priority and actions. This
lookup operation is performed to match packet headers (e.g.,
5-tuple), and the keywords that search a certain keyword in
the specified position and length (position, len) in the packet
payload by bitmask operation. Fig. 4 describes its processing
steps: A packet is first parsed and matched with the header
table and then matched to a set of keywords from the keyword
table. The keyword matching process looks packet bytestream
up keywords in the table byte-to-byte. A keyword match is
found by performing an AND operation on the keyword arrays
and the payload’s byte stream, thereby determining packet
priority and actions. For example, in Fig. 4, the payload is
matched to the ”Urgent” keyword in 12-17 byte location of
the third array, and the policy with ID 23 (⟨ (0:3, 50, 100),
Fwd(1) ⟩) is assigned to the packet. The queuing / scheduling
process of this policy is described in the following section.

This keyword processing model is elaborately designed and
required to classify L7 protocols in low-latency: First, since
keyword search is performed by specifying the location for
comparison, the operation can be executed immediately with-
out the need to read the payload sequentially. Second, since
the hardware is specialized for parallel processing, matching
is completed within a single clock operation no matter the
length or the number of keywords. Therefore, MECaNIC can
process multiple keywords at once with tiny overhead. Using
this property, even if the position of a specific keyword in
the payload is variable, it is possible to handle comparisons
by matching multiple identical keywords by changing posi-
tions within the variable range. General pattern matching that
searches for an unknown position is supported in the process
offloading module, described in §III-D.

C. MECaNIC-scheduler: queueing

Queuing/scheduling model: After packet classification, the
MECaNIC -scheduler enqueues the packet into the MECaNIC -

queue that provides an advanced queueing mechanism for
URLLC. MECaNIC -queue consists of a number of queues
(i.e., shared queue pool) and provides preemptive queue allo-
cation and per-packet priority queueing. The basic principle
is that reliability-sensitive traffic has higher priority to prevent
packet loss by guaranteeing its own bandwidth, and latency-
sensitive traffic has higher priority for earlier processing.

For reliability, MECaNIC provides a preemptive queue allo-
cation mechanism that ensures a flow with a higher reliability
level not being lost by bursts of lower reliability flows. It
reserves the bandwidth of each flow by specifying a queue
range Queue(i : j) of the shared pool. Here, the queue
range can be allocated even if it overlaps with ranges of
the other flows, but flows having higher reliability priority
P r
f can preempt queues assigned to the other flows that

have lower priority P r
f . By default, the MECaNIC -scheduler

dequeues packets in a round-robin manner. Then, each queue
in the pool can reserve a certain amount of bandwidth (i.e.,

total bandwidth
the number of queues ), and the flow f with higher P r

f can have
a more reliable bandwidth reservation.

To provide low-latency communication while preserving
bandwidth allocation, MECaNIC provides per-packet priority
queueing that makes ensures a flow with a higher latency
level being out the queues earlier than lower ones. MECaNIC
assigns a dequeue priority value dpp for each packet p. As
each packet is generated by a flow, dpp is initialized based on
the latency priority P l

f of the flow, and is increased over time
while packet p waits in queue to avoid starvation. Note that
the higher the latency priority P l

f , the highest the dequeue
priority dp. Consequently, the highest latency priority packet
forwards earliest to the host layer by MECaNIC .

We believe that this per-packet priority model is quite an
effective scheduling strategy to the URLLC scale because even
the same flow can precisely control the packet processing
order that can vary depending on payload contexts. Despite
this advantage, one may be concerned with the overhead
of per-packet priority as it may require more computation
compared to the conventional priority queue which assigns
a static per-queue priority. However, MECaNIC is designed
to take advantage of parallelism in a hardware-based system;
it can update and compare the priority information of every
packet simultaneously.

Scheduling operation: Algorithm 1 describes the details of
scheduling. As stated above, MECaNIC -queue is implemented
by exploiting the hardware parallelism to process multiple
queues in parallel. It consists of two steps: enqueuing packets
into the shared queue pool, and dequeuing packets according
to their priority. Scheduled packets are forwarded to the
host layer in turn. Upon receiving a packet from network
interfaces, MECaNIC collects packet body (i.e., in packet)
and scheduling parameters including the queue range ([i : j]),
reliability priority (P r

f ), and latency priority (P l
f ).

For enqueueing, MECaNIC then gets the candidate queue
list Candidates from the queue pool QueuePool with the
queue range [i : j] (Line 2). In Line 3, MECaNIC gets
queues that can be allocated to the given packet (Alloc).
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Algorithm 1: MECaNIC scheduler queueing

Input: in packet, rule ([i : j], P r
f , P

l
f )

1 >> Upon receiving every packet, enque
2 Candidates← QueuePool[i : j]
3 Alloc← {q ∈ Candidates| q.P r ≤ P r

f }
4 Lowest← {q ∈ Alloc| q.P r equals minq∈Alloc(q.P

r)}
5 q ← argminq∈Lowest(q.tslast in)
6 q.P r ← P r

f

7 Enqueue (q, pkt(in packet, P l
f , P

l
f , clk))

8 ⇒ pkt:(in_packet, dp, dp_tick, in_time)

Output: out packet
9 >> At every time tick, dequeue

10 targetq ← argmaxq∈QueuePool[:](q.head.dp)
11 if ∃targetq then
12 pkt← targetq.dequeue()
13 out packet← pkt.in packet
14 Forward out packet to the host layer
15 end if
16 parfor in q ∈ QueuePool[:]
17 parfor in pkt ∈ q
18 pkt.dp← pkt.dp+ pkt.dp tick
19 end parfor
20 end parfor

Note that q.P r inherits the last enqueued packet’s P r
f value.

Therefore, the packet can be allocated to queues for lower or
equal priority flows (i.e., q.P r ≤ P r

f ). In Line 4, MECaNIC
gets queues having the least q.P r value. It then picks the
oldest used queue q as the target queue. Note that q.tslast in

contains the timestamp at the last packet enqueued. After that,
MECaNIC updates q.P r with the current packet’s value (Line
6), and enqueues the packet (in packet) into the target queue
q. For further scheduling, packets are enqueued with additional
information, P l

f , P l
f , and clk as an initial dequeue priority

(dp), a priority update value per-tick (dp tick), an enqueued
time stamp (in time), respectively.

For dequeueing, at every device clock cycle, MECaNIC
picks targetq that has the packet with the largest dequeue
priority in its head (Line 10). Note that q.head.dp represents
the dequeue priority (dp) of the packet in the queue head
(q.head). If MECaNIC gets the target queue that contains such
a packet, it then dequeues that packet and forwards it to the
host (Line 11-15). After that, MECaNIC increases dp values
of all packets in the queue pool by dp tick (Line 16-20). Note
that our MECaNIC prototype implements the algorithm while
fully utilizing hardware parallelism. For instance, it updates
all packet information at the same time (Line 16-20).

Operation example: Fig. 5a describes how MECaNIC -
queue works with three flows having different scheduling
requirements. For ease of presentation, we assume that the
queue pool has 20 queues and the reserved bandwidth of
each queue is 1Mbps (i.e., 20 Mbps of total bandwidth). For
bandwidth allocation, Flows A, B and C are allocated with
queue-range of 0:19, 0:9 and 0:14, respectively. Note that Flow
C has the highest reliability priority, and Flow B and A have
the second and third highest, respectively (P r

C > P r
B > P r

A).
At the beginning (t0) of enqueueing, all queues are empty. At
t1, queues [0:19] are allocated to Flow A. At t2, Flow B starts
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Fig. 5: Operation example of MECaNIC queueing system

to send traffic and preempts queues [0:9], because P r
B > P r

A.
Note that although the sending rate of Flow B is 20 Mbps,
its actual bandwidth is limited to 10 Mbps as the queue range
is set to 10 queues. From t3 to t6, queues are allocated to
Flow C which has the highest P r. At t6, as the sending rate
of Flow C decreases to 3 Mbps, some queues occupied by
Flow C are released, and Flow A and B can use them again.
Fig. 5b depicts the dequeue process. MECaNIC dequeues a
packet with the highest dequeue priority value (dpp) first. In
the figure, Flow C’s packet that has the highest latency priority
P l is dequeued first when it competes with other flows.

We can consider the previous example as a scenario for an
autonomous vehicle [3]. Flow A, B, and C could be ambient
environment monitoring, cruise controlling, and emergency
braking, respectively. While driving, bandwidth is appropri-
ately distributed to all flows. However, in a dangerous situa-
tion, emergency braking (Flow C) can be supported through
reliable and low-latency communication by prioritizing it over
all other flows, and the vehicle can preserve its safety.

Per-VM hypervisor bypass: Even if the data plane well
prioritizes incoming flows, they may suffer from additional
delays and packet losses, because a hypervisor typically em-
ploys a long software-based networking stack which makes
packet buffering and contention unpredictable. To avoid this
uncertainty, as shown in Fig. 3, MECaNIC introduces the
hypervisor bypass interface which directly binds MECaNIC ’s
interfaces to each VM, enabling packets to arrive at each VM’s
virtual network interface while bypassing the unpredictable
hypervisor network stack.

D. MECaNIC-task offloading

To accelerate heavy tasks that adversely affect the overall
performance on the MEC host, the task offloading module
pre-processes packets instead of the MEC host applications.

Payload matching: To parse payload for L7 protocols,
payload matching is one of the indispensable features in
network processing. Unfortunately, it is also known as one of
the most expensive operations that delay processing time and
decrease the throughput of network applications [54], [55].
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MECaNIC can pre-process payload matching before for-
warding packets to MEC VM / applications. Thus the appli-
cation recognizes the expected payload as soon as packets are
received, drops unnecessary packets directly at the NIC, or
calls response caching so that MECaNIC responds instead.
Fig. 6a describes its structure and operation: Patterns to find in
a packet’s payload and actions to be taken when detecting the
patterns are stored in the pattern table with a payload ID. When
the actions ‘payload()’ is called with the ID at the classification
table, corresponding patterns of the ID in the pattern table are
loaded into a set of linear state machines, which sequentially
enters each byte of packet payload into the state machine on
every clock cycle, looking for matching patterns inside the
payload. If a pattern match occurs, MECaNIC will perform
the actions for each pattern: i) If the matching result should be
returned to an application, Ret action is set, and the matching
result (i.e., matched pattern and its position) is enclosed in
a designated position in the packet payload such as payload
head, tail, or an arbitrary location set in advance by an
application (e.g., Ret(128) refers to the 128 bytes offset in the
payload). Therefore, the application can proceed immediately
to the main procedure related to packet processing by referring
to the designated field without needing extra time to parse
the packet; ii) The response cache (To be explained soon) is
called to instead send a response message pre-allocated into
MECaNIC ; or iii) drop the packet at the NIC directly.

Response caching: In network services, performing a re-
sponse to redundant requests every time causes considerable
overhead. In particular, frequent responses or long-lasting
network sessions (e.g., video streaming services) [8] should
require reasonable network bandwidth for each session to
guarantee reliable network services, which can incur network
overhead in the MEC host [56]. Moreover, when MEC pro-
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Fig. 7: Example of the response caching for HTTP

vides a proxy service that downloads content from a remote
cloud and delivers it to end-devices, it requires double the
bandwidth, resulting in contention between the traffic by itself,
significantly reducing overall stream performance.

To reduce latency and overhead in data transmission on
MEC VM/applications, MECaNIC provides response caching
that allows a host application to pre-fetch response messages
into MECaNIC to make responses for specific requests at the
data plane level directly. Fig. 6b shows the overall response
caching design. A host can store some messages to be cached
per requests into a MECaNIC memory (i.e., Data table in
the figure) by deploying rules with a cache ID, and these
cached messages are managed by MECaNIC until the rules
are deleted. Here, the messages can be stored in two ways:
i) A host directly stores response messages into MECaNIC ,
i.e., MECaNIC acts like a caching server. ii) A host can set
on a download address of an outside (e.g., remote cloud) and
directly fetch and store data from that address, i.e., MECaNIC
acts like a content proxy server.

The cached message is assembled as response packets and
delivered to clients over TCP, so MECaNIC manages its own
TCP session table to keep TCP sessions of requests for the
cached data in two ways: i) Identifying requests on a host but
migrating the data transfer on MECaNIC. After identifying
request messages, a host application can delegate tasks that
are expected to have significant data transfer overhead into
MECaNIC . This operation is achieved by session migration
from a host by copying the corresponding session status (i.e.,
5-tuple, states, and SYN/ACK numbers) into MECaNIC ’s
session table. Fig. 7a shows the example of this operation
for a http request to a service application. The application
establishes a session in the usual way and prepares to send
content according to the ‘GET URL’ request. Here, the ap-
plication can migrate the TCP session about the request into
MECaNIC with the response message from the application or
the remote server. Finally, the message is sent to the client as
assembled packets without the application’s intervention.
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ii) Identifying requests AND transferring responses on
MECaNIC. When a host application deploys a rule with a
response message for a specific request in advance, MECaNIC
can identify the request with the keyword or payload matching
while tracking its TCP session and make the response directly.
Fig. 7b is an example of this operation. As some request
messages with their responses can be specified in advance, the
application can pre-fetch the responses into MECaNIC from
the application or the remote server. Then, when a specific
request is detected, MECaNIC immediately assembles the pre-
fetched data into the response packets and transfers them to
the client on behalf of the application.

IV. IMPLEMENTATION

To validate the design of MECaNIC , we have implemented
a MECaNIC prototype with NetFPGA-SUME, an FPGA-
based network card [27]. All FPGA codes are written in
Verilog and synthesized with Xilinx Vivado. The prototype is
deployed into a server with Intel Zeon Gold 5520@2.2GHz,
64GB memory, and Ubuntu 16.04. The device driver and APIs
are extended from the reference driver of NetFPGA-SUME.

There are several constants to determine the scalability of
MECaNIC . Note that these constants in this implementation
are values set for rapid prototyping and can be modified as
needed in the future: 1) The packet control module is set
to manage 1,024 5-tuple entries, and keyword matching is
configured to support 100 keywords per keyword ID of the
same header; 2) The priority control module is implemented
with 20 queues and can allocate up to 500 Mbps of bandwidth
per queue depending on its criticality; and 3) The interface
control manages 16 queues so that the MECaNIC prototype
can support 16 VMs. Payload processing is implemented with
a state machine to handle 100 patterns of 128 bytes per pattern
ID concurrently, and matching is performed by driving the
state machines with shift-registers for incoming packets. The
response caching uses DDR3 memory equipped in NetFPGA-
SUME and manages up to 4GB of data.

Supporting encryption: Processing encrypted traffic on
MECaNIC is allowed in a similar manner to other common
SmartNICs; Most SmartNICs support TLS/SSL offloading
by providing a way for VMs (or applications) to encrypt
the packet using SmartNICs’ crypto module, and processing
encrypted traffic with such modules is a very typical method
when SmartNICs are considered [25], [57], [58]. The same
method can be adopted on MECaNIC for handling encrypted
traffic in the future. In this context, an encryption key is held
by each VM and sent to MECaNIC through its configuration
APIs, and MECaNIC ’s hardware and device driver can verify
and restrict VMs to access the relevant keys only.

V. EVALUATION

Evaluation environment: The test environment consists
of the MEC host and the traffic generator, similar to Fig.
1a; The MEC host has an Intel Xeon Gold 5520, 64 GB of
RAM and NetFPGA-SUME for the MECaNIC prototype. It
runs virtual machines on the KVM [30] and Open vSwitch

(a) Throughput (b) Latency
Fig. 8: Performance baseline of NetFPGA and MECaNIC

[59], [60]. We measure network performance with/without
MECaNIC in certain situations, such as giving priority to
the VMs or running applications on the VMs. The test traffic
is generated from the hardware packet generator used in the
motivating example that transmits a certain amount of packets
at a specified rate and measures its round-trip time with a
precision of 6.25 ns.

Performance baseline: Please note that the main goal of
MECaNIC is to achieve reliable communication by precise
scheduling and bandwidth allocation for the low latency ser-
vices on the MEC host, not to improve the absolute throughput
or to reduce the overall latency. Hence, before proceeding
evaluations, we set the performance baseline to figure out
the architectural overhead added by MECaNIC . For this, we
first measured the performance of vanilla NetFPGA-SUME via
the reference NIC of NetFPGA-SUME, which is the typical
NIC designed by the NetFPGA official group so that can be
considered an objective performance comparison target for
NetFPGA-SUME implementations [61] Then, we compared
the performance with MECaNIC .

In Fig. 8, Ref.NIC-* shows the throughput and latency
results of the reference NIC when bursty traffic passes through
the hypervisor only (i.e., host only) or a VM that returns in-
coming packets immediately without doing anything. Overall
performance is converged to 5 and 6.5 Gbps and 100 and 350
µs respectively in each case, and they can be considered as our
performance baseline. Comparing this result with MECaNIC
(i.e., MECaNIC-* in Fig 8), MECaNIC has very similar
performance to the reference NIC, i.e., there is no performance
degradation by MECaNIC .

According to our analysis, the performance is mostly con-
strained by the device driver of NetFPGA and the network
processing on host software and VMs, so they vary on what
services run on. Therefore, our evaluations mainly focused on
how helpful MECaNIC is to a MEC host processing compared
to the reference NIC under various conditions and services,
and clear that this does not represent the absolute performance
limit of MECaNIC . In this context, we mark that there is room
for further improvement in absolute performance by improving
the device driver and the host system in the future.

A. Scheduling measurement

Packet scheduling: MECaNIC can schedule the process-
ing order between packets by comparing their priorities. To
evaluate its packet scheduling, we send two request packets
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contention condition (See with Fig. 1)

of different priorities, high and low, to each VM at the exact
same time using the hardware packet generator, and measure
their response times. A total of 400 packets are transmitted,
but starting from the 200th packet, an ‘urgent’ message is
included in the payload of the low-packets so that low-packets
take higher priority. The packet interval is set to 1 sec.

Fig. 9 shows the result. Without MECaNIC , packet response
times are disordered regardless of priority, and it is difficult
to discern which packets are preferential even when the low-
packets are specified with ‘urgent’ messages. In contrast, with
MECaNIC , the high-packets are definitely processed earlier
than the low-packets according to their priorities, resulting in
faster response times. Also, MECaNIC is able to determine
packet priority while considering payload (i.e., L7 protocol) by
keyword matching. Therefore, the ’urgent’ message included
in the low-packets is identified so that MECaNIC allows low-
packets to be processed earlier than the high-packets.

Under contention: To validate that MECaNIC can address
the reliability issue in the case of contention, we performed
the same evaluation of the motivating example in Fig. 1
with MECaNIC . We measured the changes in latency and
throughput of the high-traffic delivered at a rate of 2.5 Gbps
while gradually increasing the sending rate of low-traffic for
contention from 0, 2.5 and 5 Gbps every 5 sec.

Fig. 10 shows its result. The average latency increase is
only x1.38 (287.44 → 397.78 µs), a significant reduction from
x9.07 of the motivating example. Also, as latency becomes
relatively stable, the overall latency is slightly reduced. In
addition, the throughput remains constant regardless of the
increase in low-traffic, i.e., the loss rate is decreased to zero.

The slight latency variation (0.38) in the 10-15 sec period
(i.e., the low-traffic is at 5 Gbps) is caused by processing
delay for the low-traffic in the host; Since low-traffic carries
twice as many packets as high-traffic in that period, there is

(a) Sending rate (b) Receiving rate
Fig. 11: Bandwidth reservation

(a) Throughput (b) Latency
Fig. 12: Performance of pattern processing

a moment where the host receives and processes low-traffic
only. At this moment, the next high-traffic packet needs to
wait. This may be alleviated if the host process scheduling
works in cooperation with MECaNIC .

Bandwidth control: MECaNIC can control bandwidth
allocation by the queue-range bound. To validate this, we send
three flows toward three VMs (i.e., Flow A, B and C), and
each flow entry is set to share 5 Gbps of bandwidth; For the
queue range of 0-9 for a 5 Gbps capacity (i.e., 0.5 Gbps per
queue), the entries are set to ⟨ Flow A, Queue(2:9), Priority(1)
⟩, ⟨ Flow B, Queue(2:5), Priority(3) ⟩, ⟨ Flow C, Queue(0:7),
Priority(5) ⟩. That is, each flow is allocated with 4, 2 and
4 Gbps of bandwidth, respectively, but the queue ranges are
slightly different. Then, the flows are generated while changing
the sending rate as shown in Fig. 11a.

Fig. 11b shows the receiving rate passing through each VM,
and we can check that MECaNIC successfully enforces its
maximum bandwidth rate. At first, Flow A sends at a rate of
5 Gbps (0-5 sec), but the bandwidth for VM A is limited to 4
Gbps. When Flow B starts (5-10 sec), it is reserved 2 Gbps by
taking part of the bandwidth allocated to Flow A, since their
queue ranges ([2:9] and [2:5]) are distributed according to their
criticality. Moreover, since the queue range [0:1] is reserved
for Flow C, 1 Gbps out of the total 5 Gbps of bandwidth
remains idle capacity that cannot be used by Flow A. It is only
used after Flow C starts from 10 sec. Then, as the sending rate
of Flow C increases, the receiving rates of VM 1 and 2 are
adjusted by queue range and assigned by criticality.

B. Task offloading measurement

Pattern matching: MECaNIC can accelerate the perfor-
mance of MEC applications by payload matching at the data
plane level, allowing match results to be recognized as soon as
applications receive packets. Here, we see how MECaNIC ’s
pattern match support can improve the performance of MEC
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Fig. 13: TCP session-packet transferring

(a) File download time (b) Random access response time

Fig. 14: response caching benchmark

applications. The MEC VM runs Snort IDS [62] to perform
payload search without other options and leverages this as an
application that matches payload for several patterns. We then
compare the throughput and latency for the cases when MEC
applications handle packets by itself or not to determine match
results based on the result received from MECaNIC .

Fig. 12 shows its result. Compared to simple forwarding
(i.e., 0 patterns), the application causes significant performance
degradation of 50% even when searching for a single pattern.
Moreover, when processing over 100 patterns, the throughput
is reduced by another 50%, which is only about 500 Mbps. The
latency also increases significantly, especially as more patterns
are processed. On the other hand, MECaNIC handles multiple
patterns in parallel via hardware. Hence, the application does
not incur a performance penalty from payload matching.

Response caching - TCP session: MECaNIC can manage
TCP sessions and generate response messages at the data plane
level by itself on the response caching. We evaluate how many
transactions MECaNIC can handle in transferring data (i.e.,
transactions per second, TPS) by requesting arbitrary data of
varying sizes (64-1514 bytes) from the packet generator.

As seen in Fig. 13a, MECaNIC can handle about 2M-185K
sessions depending on packet transfer sizes. Also, since upcall
to the host software layer is not needed, session establishment
only takes 1-2 µs (Fig. 13b). Measuring these performances
with a simple TCP session handler running on the host VM,
the application can only manage 1.6K sessions and takes
200-400 µs to establish a session. This result indicates that
MECaNIC can significantly improve the throughput of the
MEC host and reduce its response time.

File download: To evaluate general response caching per-
formance, we measure the time elapsed when downloading a 4
GB file stored in the MEC VM through wget. The MECaNIC
workflow is shown in Fig. 6 in §III-D.

Fig. 14a shows its result, and we see that response caching
significantly improves the file download response time. The

download time that has taken around 8 sec on average and
up to 12 sec through the naive wget command is reduced
to 5.6 sec with MECaNIC response caching. Also, when the
content is fetched into MECaNIC in advance like Fig. 7b, the
time is further reduced and converges at 4 sec. Also, assuming
network stress for proxy from a remote server, MEC VM is
significantly affected and the average download time increases
to 18 sec. However, since MECaNIC handles the file transfer
at the data plane level directly without interference from/to the
host, there is no difference in the download time.

Video streaming: To evaluate the improvement in response
time through response caching, we implement a simple video
streaming interface using Flask [63] on the host VM and
measure the response time for seeking a random position in
a video (i.e., random access) by the HTTP random range
requests [64]. The time is measured from the time the search
is requested to the completion of receiving 2, 4 and 8 MB data
chunks corresponding to 480p, 720p, and 1080p resolutions,
respectively. In the case of MECaNIC , it is assumed that the
video is fetched in the task offloading module in advance, and
it reads the request message by the pattern matching feature.

As seen in Fig. 14b, the response time for MECaNIC is
very short for all chunk variations. Even for 8 MB (1080p), the
maximum response time is less than 8 ms, which is equivalent
to a seek of an arbitrary position in the video in less than one
frame (16 ms) at 60 FPS by simple calculations, achieving
near real-time user experience. In the case of the MEC VM,
the average response times are 11.09, 19.95 and 41.39 ms
respectively for each video chunk size, and even the fastest
case is about 40% slower than the slowest case of MECaNIC
(i.e., 1080p-8MB). Also, the response time reaches up to 75
ms, which is a perceivable delay to the end-user.

VI. CONCLUSION

The existing MEC architecture overlooks how the network
should handle traffic for URLLC. Hence, packets for important
services can be delayed or lost, and packet processing incurs
considerable overhead in MEC hosts. To address this issue, this
paper presents MECaNIC , a novel architecture that defines
a hardware data plane for MEC hosts to provide precise
scheduling and process offloading for URLLC. MECaNIC can
effectively prioritize latency-sensitive traffic while ensuring
reliable communication, even if packet contention occurs.
Also, payload processing and response caching of MECaNIC
reduce packet processing time in MEC applications and enable
a faster response by mitigating host overhead. We believe that
MECaNIC will play an important role in the Internet of Ev-
erything (IoE) era where more devices will be connected, from
improving service quality to preventing fatal malfunctions.
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